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LOGARITHMIC COMPOSITION INEQUALITY
IN BESOV SPACES

Young Ja Park*

Abstract. A logarithmic composition inequality in Besov spaces
is derived which generalizes Vishik’s inequality:

‖f ◦ g‖Bs
p,1

.
(
1+log(‖∇g‖L∞‖∇g−1‖L∞)

)‖f‖Bs
p,1

,

where g is a volume-preserving diffeomorphism on Rn.

1. The main discussion

M. Vishik[6] derived a logarithmic inequality in order to prove the
global in time vorticity existence of the 2-D Euler equations in critical
Besov spaces Bs

p,1 with sp = 2. It can be explicitly displayed as follows:
for a volume-preserving bi-Lipschitz homeomorphism g : Rn → Rn and
f ∈ B0

∞,1(Rn), we have f ◦ g−1 ∈ B0
∞,1(Rn) and

‖f ◦ g−1‖B0
∞,1

≤ C
(
1+log(‖g‖Lip‖g−1‖Lip)

)‖f‖B0
∞,1

for some constant C = C(n) independent of f , g and

‖g‖Lip := sup
x 6=x′

|g(x)− g(x′)|
|x− x′| .

D. Chae later discussed a similar result on Triebel-Lizorkin spaces[1].
This paper generalizes Vishik’s inequality on B0

∞,1(Rn) to more general
Besov spaces Bs

p,1(Rn). Here is the main result:

Theorem 1.1. Let f ∈ Bs
p,1(Rn) with 1 ≤ p ≤ ∞ and |s| < 1.

Suppose g : Rn → Rn is a volume-preserving diffeomorphism belonging
to (homogeneous) Sobolev space Ẇ 1,∞(Rn). Then f ◦ g ∈ Bs

p,1(Rn) and

‖f ◦ g‖Bs
p,1

.
(
1+log(‖∇g‖L∞‖∇g−1‖L∞)

)‖f‖Bs
p,1

.
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It is worth while pointing out that this result on Besov spaces can be
discussed in general Triebel-Lizorkin spaces and that some other types
of estimates for composition mapping can be found in [5](see page 209).

One of the typical examples of the volume-preserving diffeomorphisms
g in Theorem 1.1 is the particle trajectory mapping X(·, t) which is often
discussed in the theory of fluid mechanics. In fact, if u(·, t) is a divergence
free vector field and {X(x, t)} is the solution of the ordinary differential
equation:

{
∂

∂t
X(x, t) = u(X(x, t), t),
X(x, 0) = x,

(1.1)

then it can be noted that X(·, t) is a volume-preserving diffeomorphism.
Theorem 1.1 can be applied to the 2-D vorticity equation corresponding
to the incompressible Euler equations given by

∂

∂t
ω + (u,∇)ω = 0,(1.2)

where ω := curl u with the initial vorticity ω0 := curl u0. It is well-
known that the solution ω(x, t) of the 2-D vorticity equation can be
represented by

ω(x, t) = ω0(X−1(x, t)), x ∈ R2.(1.3)

Therefore by virtue of Theorem 1.1, it can be said that

‖ω(t)‖Bs
p,1

.
(
1+log(‖∇xX(·, t)‖L∞‖∇xX−1(·, t)‖L∞)

)‖ω0‖Bs
p,1

.

Here are some notations which will be used throughout this paper.
Let S(Rn) be the Schwartz class of rapidly decreasing functions. Take
a nonnegative radial function χ ∈ S(Rn) satisfying supp χ ⊂ {ξ ∈ Rn :
|ξ| ≤ 5

6}, and χ = 1 for |ξ| ≤ 3
5 . Set hj(ξ) := χ(2−j−1ξ)− χ(2−jξ), and

it can be easily seen that

χ(ξ) +
∞∑

j=0

hj(ξ) = 1 for ξ ∈ Rn.

Let ϕj and Φ be functions defined by ϕj := F−1(hj), j ≥ 0 and Φ :=
F−1(χ), where F represents the Fourier transform on Rn defined by

F(f)(ξ) = f̂(ξ) =
∫

Rn

e−ix·ξf(x)dx.
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Note that ϕj is a mollifier of ϕ0, that is, ϕj(x) := 2jnϕ0(2jx) (or ϕ̂j(ξ) =
ϕ̂(2−jξ)). One can readily check that

Φ(x) +
k−1∑

j=0

ϕj(x) = 2knΦ(2kx) for k ≥ 1.

For f ∈ S ′(Rn), denote ∆jf ≡ hj(D)f = ϕj ∗ f if j ≥ 0, ∆−1f ≡
Φ ∗ f and ∆jf = 0 if j ≤ −2. The partial sums are also defined:

Skf :=
k∑

j=−∞
∆jf for k ∈ Z. Assume s ∈ R, and 1 ≤ p, q ≤ ∞. The

Besov spaces Bs
p,q(Rn) are defined by

f ∈ Bs
p,q(Rn) ⇔ {‖2js∆jf‖Lp}j∈Z ∈ lq.

Notation Throughout this paper, the notation X . Y means that
X ≤ CY , where C is a fixed but unspecified constant. Unless explicitly
stated otherwise, C may depend on the dimension n and various other
parameters such as exponents, but not on the functions or variables
(u, v, f, g, xi, · · · ) involved.

2. The proof

Let g : Rn → Rn be a volume-preserving diffeomorphism with g(x) =
(g1(x), g2(x), · · · , gn(x)) and f ∈ Bs

p,q(Rn). Then f can be written as

f =
∞∑

m=−1

∆mf.

By plugging this representation into the definition of the Besov space
Bs

p,q(Rn), we have

‖f ◦ g‖Bs
p,1
≤

∞∑

j=−1

∞∑

m=−1

2js ‖∆j(∆mf) ◦ g‖Lp

=
∞∑

m=−1

∞∑

j=−1

2js ‖∆j(∆mf) ◦ g‖Lp .
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Choose arbitrary N ≥ 1 (the explicit choice will be made later) and
consider three cases: j −m > N , m− j > N , and |m− j| ≤ N to get

‖f ◦ g‖Bs
p,1
≤

∞∑

m=−1


 ∑

j<m−N

+
∑

j>m+N

+
∑

|j−m|≤N


 2js‖∆j((∆mf) ◦ g)‖Lp .

It suffices to estimate ‖∆j((∆mf) ◦ g)‖Lp . The following partition of ϕ̂
can be used:

ϕ̂(ξ) =
n∑

k=1

iξkθ̂k(ξ), θ̂k(ξ) =
1

inξk
ϕ̂(ξ).(2.1)

Here ϕ̂(ξ) ∈ C∞
0 (Rn) and supp θ̂k ⊂ {ξ ∈ Rn|35 ≤ |ξ| ≤ 5

3} for k =
1, 2, · · · , n. For any f ∈ S′(Rn) and j ≥ 0, we define

∆̃jkf = θ̂k(2−jD)f = 2jnθk(2j ·) ∗ f, for k = 1, 2, · · · , n.

Then (2.1) implies that

∆j = 2−j
n∑

k=1

∂k ◦ ∆̃jk, j ≥ 0,

which is essential in the following proof.

We now look at the three cases separately. In case of m > N + j, we
have

∆j((∆mf) ◦ g)(x)

= 2−m
n∑

k=1

∆j(∂k(∆mkf) ◦ g)(x)

= 2nj−m
n∑

k=1

∫

Rn

ϕ(2j(x− y))(∂k∆̃mkf)(g(y))dy

= 2nj−m
n∑

k=1

∫

Rn

ϕ(2j(x− g−1(z)))(∂k∆̃mkf)(z)dz

= −2(j−m)+nj
n∑

k,l=1

∫

Rn

∂zl
ϕ(2j(x− g−1(z)))∆̃mkf(z)∂zl

g−1
l (z)dz.

From this we get that

‖∆j((∆mf) ◦ g)‖Lp . 2j−m
n∑

k=1

‖∆̃mkf‖Lp‖∇g−1‖L∞ ,
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or we get

2js‖∆j((∆mf) ◦ g)‖Lp

. 2(j−m)(s+1)

(
n∑

k=1

2ms‖∆̃mkf‖Lp

)
‖∇g−1‖L∞ .(2.2)

For the case of m < j −N , we can write

∆j((∆mf) ◦ g)(x)

= 2(n−1)j
n∑

k=1

∫

Rn

∂xk
θk(2j(x− y))(∆mf)(g(y))dy

= 2(n−1)j
n∑

k=1

∫

Rn

θk(2j(x− y))∂k((∆mf)(g(y)))dy

= 2(m−j)+nj
n∑

k,l=1

∫

Rn

θk(2j(x− y))(∆m∂lf(g(y)))∂kgl(y)dy.

Therefore, if j −m > N , then we get

‖∆j((∆mf) ◦ g)‖Lp . 2−j‖∇∆mf‖Lp‖∇g‖L∞

. 2m−j‖∆mf‖Lp‖∇g‖L∞ .

Hence we obtain

2js‖∆j((∆mf) ◦ g)‖Lp . 2(m−j)(1−s) (2ms‖∆mf‖Lp) ‖∇g‖L∞ .(2.3)

Finally, for |j −m| ≤ N , we use the integral representation

∆j((∆mf) ◦ g)(x) = 2nj

∫

Rn

ϕ(2j(x− y))(∆mf) ◦ gdy

to reach to the estimate

‖∆j((∆mf) ◦ g)‖Lp . ‖∆mf‖Lp .(2.4)
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Now combine the estimates (2.2), (2.3) and (2.4) together to get:

‖f ◦ g‖Bs
p,1

. ‖∇g−1‖L∞2−N(s+1)
n∑

k=1

∞∑

m=0

2ms‖∆̃mkf‖Lp

+ ‖∇g‖L∞2−N(1−s)
∞∑

m=−1

2ms‖∆mf‖Lp

+ (2N − 1)
∞∑

m=−1

2ms‖∆mf‖Lp

.
(
2−N(1−s)‖∇g‖L∞ + 2−N(1−s)‖∇g−1‖L∞ + N

)
‖f‖Bs

p,1
.(2.5)

Now we choose

N =
[

1
1− s

log2(‖∇g‖L∞‖∇g−1‖L∞)
]

+ 1

so that inequality (2.5) leads to the statement of the theorem. Notice
that ‖∇g±1‖L∞ ≥ 1 since g±1 is volume preserving.
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