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LOGARITHMIC COMPOSITION INEQUALITY
IN BESOV SPACES

YouNnc JA PARk*

ABSTRACT. A logarithmic composition inequality in Besov spaces
is derived which generalizes Vishik’s inequality:

1foglls;, < (1+1og([VgllLs Vg™ lL=))If ]|z

p,1’

where g is a volume-preserving diffeomorphism on R".

1. The main discussion

M. Vishik[6] derived a logarithmic inequality in order to prove the
global in time vorticity existence of the 2-D Euler equations in critical
Besov spaces By ; with sp = 2. It can be explicitly displayed as follows:
for a volume-preserving bi-Lipschitz homeomorphism ¢ : R™ — R" and
f € BY 1(R"), we have fog~' e BY |(R") and

1f o9 e, < C (1+log(llglliplla™ Lip)) I 1 e, ,

for some constant C' = C'(n) independent of f, g and
l9(z) — g(")]|
9l|Lip := sup )
lolhin = sup 2

D. Chae later discussed a similar result on Triebel-Lizorkin spaces[1].
This paper generalizes Vishik’s inequality on Bgoyl(R") to more general
Besov spaces B, ;(R"). Here is the main result:

THEOREM L.1. Let f € B, (R") with 1 < p < oo and |s| < 1.
Suppose g : R"™ — R" is a volume-preserving diffeomorphism belonging
to (homogeneous) Sobolev space W1 (R"). Then fog € Bj 1 (R") and

1f o gllss, < (1+log(I Vgl Ve lLe)) £ 113, -
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It is worth while pointing out that this result on Besov spaces can be
discussed in general Triebel-Lizorkin spaces and that some other types
of estimates for composition mapping can be found in [5](see page 209).

One of the typical examples of the volume-preserving diffeomorphisms
g in Theorem 1.1 is the particle trajectory mapping X (-, t) which is often
discussed in the theory of fluid mechanics. In fact, if u(-, t) is a divergence
free vector field and {X (x,t)} is the solution of the ordinary differential
equation:

0
X(z,0) ==,

then it can be noted that X (-, ) is a volume-preserving diffeomorphism.

Theorem 1.1 can be applied to the 2-D vorticity equation corresponding

to the incompressible Euler equations given by

0
(1.2) 7Y + (u, V)w =0,
where w := curl u with the initial vorticity wg := curl ug. It is well-

known that the solution w(x,t) of the 2-D vorticity equation can be
represented by

(1.3) w(z,t) = wo(X Yz, 1)), zeR2%
Therefore by virtue of Theorem 1.1, it can be said that
lo®)lBs, < (1+1og(IVaX ()| Vo X (1) £20)) llwoll 53 , -

p,1 ™~

Here are some notations which will be used throughout this paper.
Let S(R™) be the Schwartz class of rapidly decreasing functions. Take
a nonnegative radial function y € S(R™) satisfying supp x C {¢ € R™ :
€] < 2}, and x =1 for |¢] < 2. Set h;(£) == x(27771¢) — x(279¢), and
it can be easily seen that

x(&) + Zhj(f) =1 for £ € R".
=0

Let ¢; and ® be functions defined by ¢; := F~1(h;), j > 0 and ® :=
F~1(x), where F represents the Fourier transform on R™ defined by

F(©) = f(©) = / ¢ f(2)da.

n
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Note that ¢; is a mollifier of ¢, that is, p;(x) := 2/"po(27z) (or ¢;(£) =
$(277¢)). One can readily check that

k—1
®(z) + Z@j(x) =2 ®(2kz) for k > 1.
i=0

For f € S'(R"), denote A;f = hj(D)f = ;= fif j >0, A_if =
®x fand A;f = 01if j < —2. The partial sums are also defined:
k

Sif = Z Ajf for k € Z. Assume s € R, and 1 < p,q < oco. The
j=—00

Besov spaces B,  (R") are defined by

feB,,[R") < {”2jsAjf||Lp}jeZ el

Notation Throughout this paper, the notation X < Y means that
X <Y, where C is a fixed but unspecified constant. Unless explicitly
stated otherwise, C' may depend on the dimension n and various other
parameters such as exponents, but not on the functions or variables
(u,v, f,g,x;,- ) involved.

2. The proof

Let g : R — R" be a volume-preserving diffeomorphism with g(x) =
(91(7), g2(), -+ ,gn(z)) and f € B ,(R"). Then f can be written as

F=Y Anf

m=—1

By plugging this representation into the definition of the Besov space
B, ,(R"), we have

1fogls, < S S0 27 1A,(Anf) o gl

j=—1m=—1

— Z Z 2jSHAj(Amf)OgHLp'

m=—1j=—1
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Choose arbitrary N > 1 (the explicit choice will be made later) and
consider three cases: j —m > N, m—j > N, and |m — j| < N to get

[e.o]

1ogls, < S [ 30+ 3 + 3 |27 1a(An) 0 9)lr

m=—1 \j<m—-N j>m+N |j—m|<N

It suffices to estimate ||A;((Amf) o g)|/zr. The following partition of ¢
can be used:

(2.1) G(&) =D i&kbk(©),  Op(§) = —— (&)
k=1
Here $(£) € C°(R™) and supp 0, C {€ € R|2 < [¢] < 3} for k =
1,2,--- ,n. For any f € S'(R™) and j > 0, we define
Ajrf =027 D) f = 2M0(27)  f, for k=1,2,--- ,n.
Then (2.1) implies that
AJZQ_JZakOAJk) jzoa

k=1
which is essential in the following proof.

We now look at the three cases separately. In case of m > N + j, we
have

A5 (Amf) 0 9)(2)
— S A O(Anif) 0 9)(2)

k=1

— gni- mz/ (29 (& — 1) sk ] 9(»))dy
— 2 ””‘Z N ICE R CUC S IR

207595 3 [0 — g ) B S ()

k=1

From this we get that

125 ((Amf) 0 g)lle S 27 Y 1 Amif Lo Vg™ I ee,
k=1
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or we get
2|2 ((Amf) © 9)l

(2‘2) S Q(j—m)(s—f—l) (Z 2m8||Amk:f|LP> ||Vg_1||L°°-

k=1
For the case of m < j — N, we can write
Aj((Amf)og)(z)

Y / 05, 00(2 (2 = ) (A f)9(y)dy
k=1

=200IN " 02 (2 — ) O (A f) (9(v)))dy

k=17R"

=205 37 [ 023w = ) A o)k ().

k=1

Therefore, if j —m > N, then we get

128 ((Amf) 0 9)lle S 277 IVAR Sl [V gl
S 2" N A S e IVl pee.

Hence we obtain

(2.3) 27 A;((Amf) 0 9llze < 2007 (273 || A, £l 1) |V gl oo

~

Finally, for |[j — m| < N, we use the integral representation

n

8i((Bnf) o)) =2V [ o(2i(@~ y))(Anf) o gdy
to reach to the estimate

(2.4) 18 ((Amf) o glie S | Am e
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Now combine the estimates (2.2), (2.3) and (2.4) together to get:

n oo
1f o gllmy, SNV lLe2 VTN " 2™ Ayl

k=1 m=0
+ [ VgllL=2 N0 S 7 2 A f e
m=—1
+ (2N =1) > 2™ Apflle
m=—1
(2.5) S (27N Vglle + 27N Vg e + ) I8,

Now we choose
1 p—
N = L s logy([[VyllL=(Vg 1\|Lm)} 41

so that inequality (2.5) leads to the statement of the theorem. Notice
that ||[VgT!||L~ > 1 since g*! is volume preserving.
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